
50 The Delphi Magazine Issue 57

Effective Delphi
Class Engineering
Part 1:
Crossing The Chasm
by David Baer

This is the first instalment in a
series in which we’ll look at

what it takes to become an object
oriented programmer using
Delphi. The intended audience are
those of you who have been using
Delphi, who know the Object
Pascal language reasonably well,
and who want to be able to take
advantage of the Object part of the
language of Delphi. For more infor-
mation on how this series came to
be, please see the sidebar
opposite.

In the series, we’ll focus on what
is required in effectively designing,
creating and using classes and
objects in Delphi. Stated another
way, we’re going to focus exclu-
sively on Delphi classes. To that
end, we won’t look at a number of
other related topics. For example,
while all Delphi components are
classes, the technology of compo-
nents is beyond that of classes, and
we’re not going that far. We’re also
not going to examine the implica-
tions of Delphi classes in the con-
text of COM (Microsoft’s Comp-
onent Object Model). The mindset
for applying the COM approach to
objects is somewhat different than
that for native Delphi OO pursuits.
Finally, we won’t have time to
explore Object Oriented Analysis,
that is, the act of determining class
composition, class relationships,
and so forth. It’s not that OOA is a
waste of time, but I believe you’ll
find that a healthy dose of common
sense, plus a good understanding
of the problem domain of your
intended application, will take you
a very long way indeed, without a
formal study of OOA.

My approach in presenting this
material will be much like that
taken by Scott Meyers in his Effec-
tive C++ books (to which I am con-
siderably indebted for inspiring
this series). I’ll provide a one-
sentence rule, guideline or sugges-
tion, and follow that with an expla-
nation. Unlike Dr Meyer’s books,
which assume some C++ OO expe-
rience on the part of the reader,
we’re going to start completely at
the beginning.

In this first instalment, we’ll
focus on what it takes to make the
philosophical transition from
developer to object oriented devel-
oper. Much of the material will not
seem very Delphi-specific, but fear
not. We’ll begin to get down to the
Delphi metal in Part 2. Likewise, in
this first instalment, you won’t find
much in the way of code examples.
There’s too much groundwork that
needs to be established first. More
code will be forthcoming when it’s
appropriate. So, without further
ado, let us begin.

Learning OO
First and foremost, believe that this
pursuit is worthwhile.

Learning to use OO effectively is
not a trivial undertaking. While the
mechanics of using the language to
implement classes are only moder-
ately challenging, developing your
skills to the point that effective
application of these techniques is
second nature will require disci-
pline, study and practice. But, have
no doubts, your efforts will be
handsomely rewarded!

OO has been with us for well
over fifteen years now, and it has

become a mainstream technology
over the last five or six years.
Unlike a lot of faddish methodolo-
gies or technologies that appear
with a huge fanfare, momentarily
attract a great deal of attention,
and virtually disappear a short
time later, OO has unfailingly
gained increasing acceptance with
each passing year. While many in
our profession still don’t ‘get it’, of
those who have undertaken a legit-
imate study of OO, few walk away
disenchanted or cynical (and in
my experience, ‘few’ means none).

This is because OO provides a
framework within which you can
organize your data and program
logic in such a fashion that your
software will be more reliable,
robust and malleable.

It will be more reliable because,
provided you are capable of writ-
ing coherent code in the first place,
the organizational tools OO offers
let you produce code with fewer
bugs. The bugs that do creep in
will often be easier to diagnose and
correct.

Your software will be more
robust, because you’ll waste less
time debugging the simple bits,
and the OO framework will allow
more complex solutions than
would be possible with a conven-
tional programming approach.

Finally, your software will be
more malleable (that is, more flexi-
ble in accommodating changing
functionality requirements), again
largely because of the organiza-
tional qualities inherent in an OO
approach.

Delphi is not the only game in
town when it comes to OO, but it’s
a great place to start this study.
Pascal already has many positive
attributes (even without consider-
ing the object capabilities), and
those can make this pursuit all the
more efficient. To be sure, the
Object Pascal object model lacks a
few niceties found in other lan-
guages, but it also offers a few not
found elsewhere. Irrespective of
the language, however, developing
an OO view of software develop-
ment is beneficial in its own right.
The language is just a vehicle.
Once you comprehend the OO
philosophy, that understanding



May 2000 The Delphi Magazine 51

can transcend language-specific
considerations, and you should
benefit from it throughout your
career.

So, are you convinced yet?
Learning OO can advance your
career, elevate your professional
prestige, and even improve your...
err... social life. That’s a pretty
brassy claim indeed, but not really
all that far fetched. Let’s see: more
money (from career advance-
ment), more self-esteem (profes-
sional prestige), and more energy
(fewer long days chasing elusive
bugs). Maybe it’s not so far fetched
after all!

Speaking for myself, I can tell you
that few things impart more satis-
faction than designing an elegant
and powerful class, and I can only
hope you will all feel that excite-
ment yourselves one day. It’s an
immensely good feeling. You’ll feel
like clenching your fist, making a
gesture like you’ve just won match-
point at Wimbledon, going to your
office door, and shouting ‘The
doctor... is in!’

Delphi Class Development
Understand that you’ve been coding
Delphi classes all along.

In one sense, the worst enemy to
learning Delphi OO programming
is Delphi itself. Delphi’s RAD capa-
bilities make it easy to produce
sophisticated applications without
forcing you to examine the magic
that makes it all happen. And the
source of that magic? It’s none
other than the Delphi class and
object machinery (along with a lot
of brilliant engineering on the part
of Borland, of course).

The problem is that the Delphi
IDE and the VCL collaborate to pro-
duce the wonderfully powerful
development instrument we’ve all
come to know and love. But it
makes it easy to overlook the fact
that, when you develop a form, you
are actually creating a Delphi class.
Unfortunately, there’s a compro-
mise that’s been made. In order for
you to be able to effortlessly
create your applications, the
practice of certain proper OO tech-
niques is abandoned in favor of
ease of use. Marco Cantù explained
this conflict nicely in a short paper

called When RAD Is Bad, and I rec-
ommend that you read it when you
feel ready. You can find it at the
Borland Community website:

http://community.borland.com/
devnews/article/
1,1714,10463,00.html

But my point in bringing this up is
not to criticise Borland’s solution.
Rather, I just want to make you
realize that, as we start to explore
some particular topic, experienc-
ing some sense of déjà vu may not
be all that inexplicable. As you
learn more about Delphi class
development, you should examine
your familiar Delphi coding
practices to see they map to the

more formal OO you’ll presently
be learning.

Two Little Words
Understand what a class is and what
an object is.

It seems reasonable that we
should start with a formal defini-
tion of terms class and object, given
that we’ll be using them a lot. But I
think it may be better to start with
informal definitions. We’ll add to
those definitions, at least implic-
itly, as we proceed. We can get off
to a good start by considering an
analogy to something with which
you should already be quite
familiar, Delphi components.

Unfortunately, this analogy has
a built-in hindrance. What are

So, Who Died And Named You King?
The above question is a delightfully sarcastic rejoinder I recall from
younger days. It was reserved for those occasions where someone was
acting bossy or pretentious. It’s certainly reasonable to question
whether a person who would write ‘Effective Anything’ is guilty of
arrogance, especially when, like myself, that person does no routine
teaching or mentoring. I can only offer my qualifications, and let you
be the judge.

This series came about as a result of an email correspondence with
Our Esteemed Editor. In one of my messages, I bemoaned the fact that
coming up with worthy topics was perhaps the hardest part of writing
for a publication in which my fellow contributors have such extraordi-
nary credentials. I was somewhat surprised by his reply: he informed
me that a good number of readers wanted more fundamental (ie, less
esoteric) information about how to leverage our favorite tool. I had
always thought that a series of tutorials on basic object oriented
programming using Delphi would be worth writing, and was pleas-
antly surprised to learn that some people out there might actually
want to read it. Perhaps now, with Kylix on the not-too-distant
horizon, the value will be even greater. Who knows what size hordes
will stampede into the Delphi arena when the Linux doors open?

As for my credentials, I can state with utter confidence that no one
has a greater belief in the value of object oriented approaches to soft-
ware development than myself. I first came to see the power of OO in
the early nineties. I was researching a way to migrate some heavy-
duty PL/1 programs to an open systems platform that had no PL/1
compiler. When I discovered that C++ string objects could be made to
behave just like string variables in PL/1, I was hooked. I immediately
became an acolyte and became an OO evangelist not long thereafter.
Throughout my career, I seem to have continually gravitated toward
projects whose purpose was to empower other developers: compilers,
coding tools of various sorts, and larger scale enabling frameworks
and architectures. For me, OO was the discovery of a lifetime. Then,
Delphi came along and made a good thing even better.

There you have it. There are many who are qualified to write a
series like this and some of them, no doubt, could do it better than I.
But, as no one else has stepped forward to do so, I’m going to try.
I very much hope some find it of value.



52 The Delphi Magazine Issue 57

those things on the component
palette that you click on when you
want to drop a control of a form
called? They’re components, of
course. Now, what are those con-
trols that appear after they’re
dropped on your form called? Um...
again, components?

You see, the little image on the
component palette is a representa-
tion of an abstraction, that being
the declaration and all the imple-
mentation code underlying the
component. On the other hand,
that control on your form is a
living, breathing instance of the
abstraction (well, metaphorically
speaking, anyway). Our common
use of the term component does
not differentiate between the
abstraction and the instance.

Take away the IDE interactions
and the streaming capabilities of
components and we have classes
and objects. All component
abstractions are classes, and all
component instances are objects.
Classes/objects do not have to be
components, however. As you will
see later, classes have a much
broader application than those
things on your component palette
you’ve grown to be so dependent
upon.

It’s quite easy to inadvertently
use the term object when you mean
class, even when you’ve got the
concepts down cold. Incorrectly
calling a class an object will rarely
cause confusion. What’s important
at this point is the concept. If it
helps, simply think of a class as a

cookie cutter and the cookies it
produces as objects.

Let’s take another approach to
arriving at a definition of class. I’ll
assume that you are already famil-
iar with Pascal records. Suppose
we say that a class combines the
data declarations of a record with
an associated set of procedures
and functions that operate on that
data. Now, let’s add one more
element: suppose we can dictate
that some or all of the data mem-
bers in the record are for the
private use of the associated pro-
cedures, and that others of those
procedures are likewise available
only for the private use of the
non-private ones.

We’re starting to get close to a
viable (if incomplete) working defi-
nition of what a class is. In doing
so, we’ve also encountered the
first great concept of the object ori-
ented philosophy, which is called
encapsulation. It’s often stated that
the three main principles of OO are
encapsulation, inheritance and
polymorphism. Now, inheritance
and polymorphism are somewhat
elusive topics, and we’ve got a lot
of territory to cover before we start
examining them.

Encapsulation, however, is
really simple and basic. And com-
pelling too! Even without the other
two principles, encapsulation
would make OO a worthy pursuit in
its own right. It’s the main reason
that OO programs can be made
more reliable and flexible than
their non-OO counterparts. We’ll
see how encapsulation is achieved
in the next item.

Class Member Visibility
Make your privates inaccessible to
the public.

In defining an OP class, you have
four options when choosing the
visibility of class data and class
procedures and functions: private,
protected, public and published.
First, private says ‘for internal
class use only’. Public says ‘avail-
able to interested outside parties’.
Protected is a form of private that
has implications when dealing
with inheritance. We’ll ignore it for
now, but return to it in a later
instalment. Published is a form of
public, and is, for the most part, a
designation meaningful only for
components. As such, we’ll not
involve ourselves with it at all.

Consider the declaration of a
simple class in Listing 1. It has two
integer data members, Amount1
and Amount2. These are declared as
private, they are not accessible by
the outside world. So, what has
access to them?

The answer is that the code in
the class’s two functions and one
procedure do. Class functions and
procedures are called methods.
That’s not particularly important
at this point, but it will save me a
lot of typing from now on. Class
methods are like normal functions
and procedures, but they also are
‘aware’ of the class instance (ie,
the object) on which they’re oper-
ating. This is something we’ll look
at much more closely in the next
instalment. But, back to the
business at hand.

Our primitive class allows the
outside world to supply a value for
Amount1, but Amount2 is available
only for reference: only methods of
the class are allowed to supply a
value. In effect, Amount2 is a
read-only value, available via the
GetAmount2 method. Amount1 may
be read by invoking GetAmount1,
and it may be assigned a new value
by invoking SetAmount1. We’ll see in
the third instalment of the series
that Delphi supplies a much more
elegant capability, called proper-
ties, for accessing and assigning
class data member values.

And there you have it! With one
simple stroke, we’ve acquired the
capability of allowing our objects

TSimpleClass = class
private
Amount1: Integer;
Amount1: Integer;

public
procedure SetAmount1(Value: Integer);
function GetAmount1: Integer;
function GetAmount2: Integer;

end;
...

procedure TSimpleClass.SetAmount1(Value: Integer);
begin
Amount1 := Value;
Amount2 := Value * 2;

end;
function TSimpleClass.GetAmount1: Integer;
begin
Result := Amount1;

end;
function TSimpleClass.GetAmount2: Integer;
begin
Result := Amount2;

end;

➤ Listing 1



54 The Delphi Magazine Issue 57

to go about their business with
only as much interference from the
outside world as is necessary to
deliver the functionality they are
meant to deliver. Internal mecha-
nisms for managing the affairs of a
class instance (ie an object) and for
keeping track of its current state
(which should not be any concern
of outside parties) can be kept pri-
vate.

Class Design
Design your classes to have a clear
and dedicated purpose.

Now that we have the magic
elixir of encapsulation, let’s try to
use it properly. There are several
important considerations here.
First, your classes will be more
effective if they’re unequivocal in
their purpose. In other words, try
to avoid giving a class a split per-
sonality by attempting to make it
do too many things. If a class is a
container, say of a list of names and
addresses, avoid making it take on
unrelated responsibilities (like, for
example, supplying a visual con-
trol for displaying those names and
addresses).

Instead, use multiple classes,
which can collaborate on deliver-
ing the desired result, or define a
higher level class that incorpo-
rates both. When each participat-
ing class is clearly focused, messy
entanglements are avoided and
you’re in a much better position to
respond rapidly to changing func-
tionality requirements. And I hope
it goes without saying that in avoid-
ing those entanglements, you’re
also giving yourself a considerable
leg up when it comes to finding
problem behavior.

So, how’s that for brevity? We’ve
managed to reduce the entire
study of OO Design to two short
paragraphs! Of course, there’s
much, much more to it than that.
But I’m quite sincere in my claim
that a healthy amount of common
sense, along with keeping in mind
this and the next guideline, will
serve you very well indeed. And
without that common sense, all the
OOD study you can find time for
may not get you very far.

Classes can be used for many
things. It’s probably easiest to

recognize how to represent tangi-
ble things as classes. A list of
names and addresses is tangible,
and it won’t be difficult to define
such a class once you’ve learned
the fundamentals. But, classes can
also effectively represent more
ephemeral things: processes,
relationships, even algorithms.

As you progress in your OO
pursuits, you will hopefully begin
to see these more subtle uses for
classes. As you do, you’ll also
become more skilled in designing
effective class collaborations.

Playing Politics
Design your classes to be apolitical.

This is a continuation of the pre-
vious guideline. Assuming you’ve
come up with a nicely focused
class purpose, it’s very important
that you allow your class to not get
involved with things that are not in
its list of responsibilities.

It may be helpful to think of your
class as having a contract for deliv-
ering its services to subscribing
parties. That contract is the public
interface and the specification of
what happens when methods of
that interface are invoked. You, as
the class designer/engineer, need
to act as a ‘legal advisor’. You must
ensure that your class delivers on
what is promised by the contract,
and that your class does so in a
lawful fashion (eg, does not con-
sume excessive system resources,
avoids access violations, etc).
Once you’ve got that under con-
trol, a further responsibility is to
ensure that your class isn’t bur-
dened with supplying services
outside of those promised by the
contract.

There’s an unfortunate tendency
with many developers to remedy a
problem by applying a code modifi-
cation where it’s easiest. But this
kind of thinking can be contrary to
good class design. It’s not the
responsibility of a class to correct
a deficiency in one of its clients. As
soon as you start catering to a
specific requirement of one client,
you may compromise the ability
to serve all the other clients. If
necessary, you may need to ‘re-
negotiate’ the contract, requiring a
class client needing specialized

treatment to supply a directive
that such specialized behaviour
should be enabled.

If you produce classes for use by
associates, you will also likely
encounter an expectation in some
of the other developers using them
that your classes be ‘psychic’, ie,
that they be able to determine
from some external context that a
particular mode of operation is
appropriate. When you hear argu-
ments like ‘Well, you can figure out
from our form naming conventions
that we should only be doing a par-
tial clear of the internal list
when...’, then resist with vigour.
Acquiescing to this type of request
will almost inevitably compromise
the integrity of the whole, and it
will become a losing proposition
for all concerned.

Planning
Start small, but think enterprise.

There are two aspects to this
simple guideline, both of which
suggest that, in all you do, con-
sider that your efforts merit the
attention and dedication appropri-
ate to an enterprise-scale solution.

First of all, don’t attempt overly
ambitious class solutions for your
first efforts. For example, you may
be familiar with the notion that a
well-designed application pro-
vides a clear separation between
user interface issues and business
rules and data. There’s no ques-
tion about it, this is an extremely
wise philosophy to embrace. How-
ever, the design of effective busi-
ness objects requires a lot of
experience. Not only are there a lot
of difficult issues with which to
contend, business objects and
their likely RDBMS data store are
awkward partners. Business
objects are an excellent goal to
aspire to, but you will be likely to
find them an elusive target early
on.

Instead, consider solving more
modest problems. Container
classes can be an excellent learn-
ing vehicle. By container classes,
I’m referring to a broad set of class
types that offer storage and man-
agement (eg, assignment and
retrieval) services appropriate to
the type of data being contained



May 2000 The Delphi Magazine 55

and to problem requirements. I
once presented a series of lectures
on Delphi OO programming to the
developers at my company. The
first exercise, that of creating a
class for managing bits (simple one
bit values accessible as a kind of
variable length array), proved to
be just about perfect in its scope
and challenge.

Having settled upon an initial
course of action, the follow-up is
equally important. Don’t be
tempted to take shortcuts just
because you feel your efforts aren’t
very significant. At this stage of the
game, attention to detail (that is,
attention to doing it right) is every
bit as important as it would be if
you were contributing a key piece
of a mission-critical application.
The best time to learn good
habits and practices is right at the
beginning.

The other way to apply this
guideline is to observe good OO
practices in your day-to-day
coding. I expect that many of you
reading this have needed to pro-
vide some kind of options dialog

form to augment an application’s
main form services. Delphi makes
this trivial to do, using either of two
approaches. Let’s consider a
hypothetical case.

We have a requirement that the
user be allowed to specify a start-
ing count (say, initial widget
count). Furthermore, some exter-
nal criterion (say, a command-line
parameter) dictates an upper limit
on that initial value. OK, so we
create a simple options form that
has an edit control into which the
user can type the value.

One approach is for the options
form to read the limit value from
some global variable on the main
form. When the user types in a
value, the options form validates it
against the upper limit, and sets
another global variable on the
main form. Alternatively, the main
form can access the option form’s
edit control, and be responsible for
the validations and value retrieval.

From an OO design perspective,
both of these solutions are pretty
abysmal. Suppose we chose the
first approach and we later needed

to modify the manner in which the
main form calculates and stores
the upper limit value? We’ve also
got to modify our options form to
keep things working. Conversely,
suppose we took the second path,
and later decided we wanted to
replace the edit control with a
slider bar. Now, the main form
won’t compile without changes.

So, what’s the right way? There
are are a number of viable alterna-
tives. One of them would be to
create an application options
object, which retains the upper
limit and current user-selected
value. That object could also be
responsible for the validation. The
main form could create this object
and pass a reference to it via a
method call to the options form.
The options form would interact
with the options object, and the
main form would retrieve the
resultant values from the object
after the options dialog had
closed. Neither form would need
to interact directly with the other.
That’s encapsulation at work for
you!



56 The Delphi Magazine Issue 57

OK, that’s also admittedly a bit
more work than doing it the ‘easy’
way. It’s difficult to see the benefits
of encapsulation in situations of
low complexity. But the point is
that by doing it the right way, you
will have hopefully developed
some good habits. In situations of
high complexity, you’ll benefit
when these habits are second
nature, not practices with which
you have to struggle.

Design Methodologies
In the early stages of your OO educa-
tion, don’t feel compelled to learn
advanced design methodologies.

This one is based upon personal
experience (and is a potentially
controversial opinion, admit-
tedly). I recall that in my own early
studies of OO, using C++, I was con-
tinually looking aside because I
thought I needed to understand
some peripheral philosophy,
methodology or notation. In read-
ing other material on OO practice
and technique, you may well feel
like you won’t make any progress
unless you stop to first learn, for
example, the Unified Modelling
Language. Now, I am not disparag-
ing UML here, and it’s probably
something you will eventually
benefit from learning.

Instead, I’m merely suggesting
that you’re embarking upon the
study of a subject which has a
seemingly unlimited ‘knowledge
space’. You’ll always be able to find
something new to learn, or ways to
improve your existing expertise.
Relax! No one can absorb all of this
rapidly or easily. But, you do need
to get off to a good start. Start by
designing and building simple
classes, but doing so with a goal
that you’re going to do it as well as
can be done. Stay focused on this
one goal, and the fundamentals can
be mastered. At that point, feel free
to follow your bliss wherever it
takes you.

Plunder The Wise
Recognize that you’re not going to
be able to achieve proficiency in OO
practice on your own: seek out the
wisdom of the masters.

When faced with a programming
problem they don’t know how to

solve, a great many developers feel
content to find some example code
that does somewhat the same
thing, copy the techniques, get
things working, and move on to the
next problem. This approach won’t
take you very far with OO. Cer-
tainly, one can learn the rudiments
of class design and implementa-
tion by looking at how others do it.
You’ll be able to get to the point
where you can make things work, if
only somewhat crudely. But
there’s an ocean of subtlety and
nuance you’ll never understand if
this is your only means of enlight-
enment.

It seems to me that the study of
OO has attracted some of the finest
minds of our time. These individu-
als are brilliant, my friends! Fur-
thermore, they frequently meet,
they discuss and they argue. What
has resulted is a considerable
body of extraordinary wisdom. So
much, in fact, that it’s more than a
little intimidating to consider an
exploration of it. So, where to
begin?

One excellent place to start is
the book Refactoring by Martin
Fowler (Addison-Wesley, ISBN
0-201-48567-2) reviewed in the
April 2000 issue of Developers
Review. The purpose of the book is
to show how badly designed
OO-based implementations can be
methodically improved. The
reason I’m recommending it as an
early study aid is that Mr Fowler
does an admirable job of enumerat-
ing bad OO techniques and
practices which should be avoided
in the first place! All the code
examples are in Java, but the
examples are mostly brief, and the
text is quite adequate in conveying
his points in any case, even if you
can’t follow the Java code.

When you’re a bit further along
in your adeptness with OO, a
must-read is the highly regarded
book Design Patterns by the
so-called Gang of Four (Gamma,
Helm, Johnson and Vlissides, Addi-
son-Wesley, ISBN 0-201-63361-2).
This remarkable book shows how
a number of adaptable strategies
may be enacted to solve a wide
range of commonly encountered
design challenges. In reading it,
you may find yourself experienc-
ing one epiphany after another. It’s
somewhat advanced, so don’t be
discouraged to not fully under-
stand it upon first encounter (and
the code, unfortunately, is all
either C++ or Smalltalk).

Finally, there’s the VCL itself.
Not all classes in the VCL are exem-
plary, but there’s plenty that are.
This final suggestion may seem
contrary to ‘don’t just copy’ advice
earlier. But an examination of a
nicely formed solution in relation
to a particular topic can be illumi-
nating. I’ll be making recommenda-
tions for specific classes to study
as we go along.

Next Time
We’ll make a dizzying descent from
the 50,000 foot view to about the
one inch view, where we’ll take a
close-up look at the object machin-
ery as implemented by Delphi’s
compiler.

David Baer is Chief Software
Architect at Spear Technologies in
San Francisco. He’d much rather
hear the phrase ‘Oh Oh’ used
during the software design phase
than the deployment phase.
Contact David at dbaer@
speartechnologies.com


	Learning OO
	Delphi Class Development
	So, Who Died And Named You King?
	Two Little Words
	Class Member Visibility
	Class Design
	Playing Politics
	Planning
	Design Methodologies
	Plunder The Wise
	Next Time

